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ABSTRACT The fungi are an enormously successful eukaryotic lineage that has
colonized every aerobic habitat on Earth. This spectacular expansion is reflected in
the dynamism and diversity of the fungal cell wall, a matrix of polysaccharides and
glycoproteins pivotal to fungal life history strategies and a major target in the devel-
opment of antifungal compounds. Cell wall polysaccharides are typically synthesized
by Leloir glycosyltransferases, enzymes that are notoriously difficult to characterize,
but their nucleotide-sugar substrates are well known and provide the opportunity to
inspect the monosaccharides available for incorporation into cell wall polysaccha-
rides and glycoproteins. In this work, we have used phylogenomic analyses of the
enzymatic pathways that synthesize and interconvert nucleotide-sugars to predict
potential cell wall monosaccharide composition across 491 fungal taxa. The results
show a complex evolutionary history of these cell wall enzyme pathways and, by
association, of the fungal cell wall. In particular, we see a significant reduction in
monosaccharide diversity during fungal evolution, most notably in the colonization
of terrestrial habitats. However, monosaccharide distribution is also shown to be var-
ied across later-diverging fungal lineages.

IMPORTANCE This study provides new insights into the complex evolutionary history
of the fungal cell wall. We analyzed fungal enzymes that convert sugars acquired
from the environment into the diverse sugars that make up the fundamental build-
ing blocks of the cell wall. Species-specific profiles of these nucleotide-sugar inter-
converting (NSI) enzymes for 491 fungi demonstrated multiple losses and gains of
NSI proteins, revealing the rich diversity of cell wall architecture across the kingdom.
Pragmatically, because cell walls are essential to fungi, our observations of variation
in sugar diversity have important implications for the development of antifungal
compounds that target the sugar profiles of specific pathogens.

KEYWORDS biosynthesis, carbohydrates, evolution, fungal cell wall, nucleotide-sugar
biosynthesis, phylogenomic analysis

ungi comprise a kingdom of heterotrophic eukaryotes that have colonized every

aerobic habitat on Earth. In doing so, fungi have evolved spectacular morpho-
logical, metabolic, and ecological diversity, including the morphologically simpli-
fied cytoparasitic Microsporidia, specialist inhabitants of the oceanic igneous crust
(Exophiala) (1), vascular plant root mutualistic symbionts (mycorrhiza), extinct tree-
like Prototaxites spp. (2), and even species that have colonized anaerobic deep-sea
sediments (3).
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FIG 1 Schematic illustration of cell wall biosynthesis. Chitin and 1,3-B8-glucan polysaccharides are
synthesized at the plasma membrane by chitin synthase (CHS) and 1,3-B-glucan synthase (FKS),
respectively. The glycosyltransferases (GT) responsible for the synthesis of other glucans, such as 1,6-
B-glucan, are currently unknown. Cell wall proteins (CWP), mannans, and other polysaccharides are
synthesized in the Golgi apparatus and secreted into the cell wall space. Nucleotide-sugars are
synthesized and interconverted through the de novo pathway into different activated substrates of
the various GT. UDP-GIcNAc, UDP-N-acetylglucosamine; UDP-Glc, UDP-glucose; NST, nucleotide-sugar
transporter.

The breadth of fungal life history strategies is reflected in the variety and dynamism
of the fungal cell wall, a complex matrix of polysaccharides and glycoproteins that
forms a protective barrier, facilitates cell adhesion, and is pivotal to morphogenesis.
Significant cell wall structural variation evolved among species and morphotypes as
fungi adapted to diverse ecological niches (4-6). For example, the cell walls of patho-
genic fungi can withstand significant turgor pressure on the infection apparatus by
cross-linking melanin to polysaccharides (7). The fungal cell wall remodels itself in
response to shifting environmental conditions. For instance, during infection of the
human lung by Aspergillus fumigatus, a significant increase in B-glucan abundance is
observed in response to the induced hypoxic microenvironment (8). This dynamism is
particularly evident in the evasion of host immune responses through cell wall reor-
ganization to mask epitope polysaccharides, which are major targets in the develop-
ment of antifungal compounds (4, 5, 9).

Interest in characterizing fungal cell wall polysaccharides stems from the dual role
of fungi as supporters of ecosystem function (by decomposing biopolymers and other
molecules from dead organisms) and as pathogens that cause significant economic
damage. Fungi account for the majority of characterized plant diseases (10). Notable
examples include Magnaporthe oryzae, the causative agent of the devastating rice blast
(11), and Ophiostoma novo-ulmi, which has killed millions of elm trees across the
Northern Hemisphere (12). However, since the biochemical characterization of cell
walls from hundreds of fungal species from different taxa is laborious and not realisti-
cally achievable, in silico analyses that inspect enzyme pathways implicated in wall bio-
synthesis are promising high-throughput alternative methods.

Glucan, mannan, and chitin are the primary cell wall polysaccharides of biochemi-
cally characterized fungi (13). Polysaccharide and glycoprotein biosynthesis is medi-
ated by glycosyltransferases (GT) and takes place either directly at the plasma mem-
brane or in the Golgi apparatus, from which the glycans and glycoconjugates are
delivered to the cell wall through secretion vesicles (Fig. 1). Leloir GT are typically
membrane-bound proteins that use nucleotide-sugars as substrates. During catalysis, a
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FIG 2 De novo nucleotide-sugar biosynthesis and interconversion pathway in fungi. Abbreviations:
GDP-Fuc, GDP-fucose; GDP-Man, GDP-mannose; GER, GDP-fucose synthase; GMD, GDP-mannose 4,6-
dehydratase; GMPP, mannose-1-phosphate guanylyltransferase; NRS/ER, 3,5-epimerase/4-reductase;
RHM, UDP-Glc 4,6-dehydratase; UAP, UDP-GIcNAc pyrophosphorylase; UDP-Ara, UDP-arabinose; UDP-
Gal, UDP-galactose; UDP-GalA, UDP-galacturonic acid; UDP-Galf, UDP-galactofuranose; UDP-GalNAc,
UDP-N-acetylgalactosamine; UDP-Glc, UDP-glucose; UDP-GIcA, UDP-glucuronic acid; UDP-GIcNAc, UDP-N-
acetylglucosamine; UDP-Rha, UDP-rhamnose; UDP-Xyl, UDP-xylose; UGD, UDP-GIc 6-dehydrogenase; UGE,
UDP-Glc 4-epimerase; UGE*, UDP-Glc 4-epimerase/UDP-GIcNAc 4-epimerase; GAE, UDP-GIcA 4-epimerase;
UGM, UDP-galactopyranose mutase; UGP, UDP-Glc pyrophosphorylase; UXE, UDP-Xyl epimerase; UXS, UDP-
Xyl synthase.

monosaccharide is transferred to an acceptor, and a phosphate leaving group is simul-
taneously released (14). The acceptor substrate is often another carbohydrate moiety,
and the formation of a glycosidic bond to the nonreducing end of the elongating gly-
can is catalyzed. As of this writing, 106 GT families are recognized, but a comprehen-
sive understanding of the functional association between polysaccharide and enzyme
is hindered by the difficulty in working with membrane-bound proteins and the high
level of diversification that many GT families have undergone (15).

However, the biochemical pathways responsible for nucleotide-sugar formation
and interconversion are well resolved. Approximately 70 individual nucleotide-sugars
have been identified (16). The majority of this diversity is contained within prokaryotes.
In fungi, three nucleotide-sugars are responsible for the biosynthesis of the principal
cell wall polysaccharides and glycoproteins. These are UDP-glucose (UDP-Glc), utilized
by glucan synthases such as FKS for the synthesis of 1,3-B-glucans; UDP-N-acetylglu-
cosamine (UDP-GIcNAC), used by chitin synthases for the synthesis of chitin; and GDP-
mannose (GDP-Man), the substrate of multiple Golgi mannosyltransferases involved in
protein glycosylation and the synthesis of various mannans (Fig. 1).

Nucleotide-sugars comprise a nucleoside and two phosphate groups linked to, for
instance, a hexose, as in UDP-Glc, UDP-galactose (UDP-Gal), and GDP-Man; a 6-deoxy
hexose, as in GDP-fucose (GDP-Fuc) and UDP-rhamnose (UDP-Rha); a pentose, as in
UDP-xylose (UDP-Xyl); a hexuronic acid, as in UDP-glucuronic acid (UDP-GIcA) and
UDP-galacturonic acid (UDP-GalA); or an amino sugar, as in UDP-GIcNAc and UDP-N-
acetylgalactosamine (UDP-GalNAc) (17). The interconversion pathway of well-charac-
terized nucleotide-sugars is illustrated in Fig. 2. To date, there has not been a king-
dom-wide survey of the nucleotide-sugar interconversion (NSI) pathway in fungi. There
is value in carrying out such a survey, for we can identify the nucleotide-sugars avail-
able as substrates for GT in each species and inspect how the distribution of activated
monosaccharide substrates and the corresponding glycans has changed throughout
fungal evolution.

The taxonomy of the kingdom Fungi is incompletely resolved (18); however, consensus
exists for a split between flagellated early-branching Chytridiomycota, Neocallimastigomycota,
and Blastocladiomycota; between a loose grouping of clades that diversified after
losing the flagella (Mucoromycota, Zoopagomycota, Glomeromycota); and between
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FIG 3 IQ-TREE phylogeny of nucleotide-sugar pyrophosphorylases in 491 fungal taxa. Bootstrap support
values are indicated on branches. Nodes are color-coded to represent taxa as follows: blue, Ascomycota;
pink, Basidiomycota; green, Blastocladiomycota, Chytridiomycota, and Cryptomycota; yellow, Mucoromycotina,
Entomophthoromycotina, Zoopagomycotina, and Kickxellomycotina; orange, Microsporidia. A red circle
surrounding a node indicates that the corresponding enzymes or enzyme products have been characterized.
For clarity in discussion, major nodes are labeled alphabetically.

the late-branching Dikarya, composed of the Ascomycota and Basidiomycota (18,
19). The Dikarya are distinct by the independent evolution of multicellular lineages
with differentiated tissues and the eponymous presence of binucleate cells that have
not undergone karyogamy (20). Microsporidia and Rozella spp. synthesize cell walls;
however, not until after the Blastocladiomycota diverge is the cell wall present in all
stages of the fungal life cycle (19).

The work presented here inspects the presence or absence of nucleotide-sugar bio-
synthetic and NSI enzymes and the corresponding pathways across 491 fully
sequenced taxa spanning all major recognized fungal lineages. The data are used to
predict species that have the ability to incorporate specific monosaccharides into their
cell walls and illuminate our understanding of how the fungal cell wall has diversified
through time.

RESULTS

Nucleotide-sugar biosynthesis: pyrophosphorylase phylogeny. As shown in
Fig. 3, the IQ-TREE (21) phylogeny for the nucleotide-sugar pyrophosphorylase family
resolved four well-supported major clades (A, B, C, and D) that had representatives
from all major fungal lineages included in these data, specifically the earliest-branching
Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, and Opisthosporidia;
the Zoopagomycota and Mucoromycota; and, from the Dikarya, Basidiomycota and
Ascomycota. By use of experimentally characterized sequences in the data, biochemi-
cal functions were assigned to a single clade composed of UDP-GIcNAc pyrophosphor-
ylases (UAP; split A), which catalyzes the generation of UDP-GIcNAc from UTP and
GlcNAc-1-phosphate (GIcNAc-1-P) (Fig. 2); a single clade of UDP-Glc pyrophosphory-
lases (UGP; split B), which catalyzes the formation of UDP-Glc from UTP and Glc-1-P
(Fig. 2); and a single clade of mannose-1-phosphate guanylyltransferases (GMPP; split
D), which catalyzes the synthesis of GDP-Man from GTP and Man-1-P (Fig. 2). Sequence
homology and protein profile analyses confirmed these assignments and expanded
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FIG 4 IQ-TREE phylogeny of epimerase/dehydrogenase/dehydratase/mutase nucleotide-sugar interconverting enzymes in 491 fungal taxa. Bootstrap support values
are indicated on branches. Nodes are color-coded as follows: blue, Ascomycota; pink, Basidiomycota; green, Blastocladiomycota, Chytridiomycota, and Cryptomycota;
yellow, Mucoromycotina, Entomophthoromycotina, Zoopagomycotina, and Kickxellomycotina; orange, Microsporidia; black, UGE-B. A red circle surrounding a node
indicates that the corresponding enzymes or enzyme products have been characterized. For clarity in discussion, major nodes are labeled alphabetically.

GMPP to include the sister clade to the experimentally verified group (split C) and
the sequences following split E. This clade does not have early-branching fungal
representatives and is separated from the other GMPP members by a long molecu-
lar branch.

Nucleotide-sugar interconversion: epimerase/dehydrogenase/dehydratase/
mutase phylogeny. As shown in Fig. 4, the final IQ-TREE phylogeny for the nucleo-
tide-sugar interconverting epimerase/dehydrogenase/dehydratase/mutase enzymes
comprises 10 major clades (splits B, C, D, E, F, G, |, J, K, and L). Biochemically character-
ized sequences were used to assign clade function as follows: UDP-Glc 4-epimerase
(UDP-Glc < UDP-Gal), UDP-GIcNAc 4-epimerase (UDP-GIcNAc — UDP-GalNAc) (UGE-A
and UGE-B; split A), UDP-Xyl epimerase (UDP-Xyl < UDP-Ara) (UXE; split B), UDP-galac-
topyranose mutase (UDP-Galp < UDP-Galf) (UGM; split L), UDP-Glc 6-dehydrogenase
(UDP-Glc — UDP-GIcA) (UGD; split K), GDP-Man 4,6-dehydratase (GDP-Man — GDP-Fuc
in combination with GER) (GMD; split 1), GDP-Fuc synthase (GDP-Man — GDP-Fuc in
combination with GMD) (GER; split E), UDP-Xyl synthase (UDP-GIcA — UDP-Xyl) (UXS;
split G), UDP-GIc 4,6-dehydratase (UDP-Glc — UDP-Rha in combination with NRS/ER)
(RHM; split D), UDP-Glc 4-epimerase (UDP-Glc — UDP-Gal) (UGE-C; split C), UDP-GIcA
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FIG 5 Annotated species tree of 491 fungi. Predicted monosaccharides available in the nucleotide-sugar activated form for incorporation into fungal cell wall
glycans are presented as colored concentric rings. Abbreviations: Ara, arabinose; Fuc, fucose; Gal, galactose; GalA, galacturonic acid; GalNAc, N-
acetylgalactosamine; Galf, galactofuranose; Glc, glucose; GlcA, glucuronic acid; GIcNAc, N-acetylglucosamine; Man, mannose; Rha, rhamnose; Xyl, xylose.

4-epimerase (UDP-GIcA «— UDP-GalA) (GAE; split F), and nucleotide-rhamnose synthase
3,5-epimerase/4-reductase (UDP-Glc — UDP-Rha in combination with RHM) (NRS/ER;
split J) activities (Fig. 2). These data show that the UGE-A, UGE-B, and UGE-C clades do
not form a monophyletic grouping: UGE-C clusters with RHM and GER, while UGE-A
and UGE-B cluster with UXE.

Distribution of nucleotide-sugar biosynthetic and interconverting enzymes in
sequenced fungi. As inferred from the functionally annotated phylogenetic data, the
identification of NSI pathways was used to predict the distribution of monosaccharides
in the fungi sampled (Fig. 5; see also Fig. ST in the supplemental material). These
results are summarized in Fig. 6, where the prevalence of specific monosaccharides is
illustrated for major fungal divisions.

Opisthosporidia, Chytridiomycota, Neocallimastigomycota, and Blastocladiomycota.
The Opisthosporidia are basal lineages that deploy cell walls only in sporulating tissues.
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Galf, galactofuranose; Glc, glucose; GlcA, glucuronic acid; GIcNAc, N-acetylglucosamine; Man, mannose; Rha,

rhamnose; Xyl, xylose.

The phylogenetic results in Fig. 5 and Fig. ST (summarized in Fig. 6) identify in
Microsporidia the enzymatic pathways to synthesize the nucleotide-sugars that carry
glucosyl, N-acetylglucosaminyl, and mannosyl residues, i.e., the substrates required for
the synthesis of the three primary carbohydrate polymers found in all fungi. However,
Rozellidea (Opisthosporidia) are shown to be able to synthesize nucleotide-sugars whose
monosaccharides are glucosyl, N-acetylglucosaminyl, mannosyl, fucosyl, glucurononosyl,
rhamnosyl, and xylosyl residues. Completing this group of early-branching, flagellated
fungi are the Neocallimastigomycota, Chytridiomycota, and Blastocladiomycota phyla.
Chytridiomycota are shown to have the ability to synthesize all sugar donor substrates
included in this study with the exception of UDP-GalNAg, i.e., the nucleotide-sugars that
carry glucosyl, N-acetylglucosaminyl, mannosyl, fucosyl, galactosyl, galacturonosyl, galacto-
furanosyl, glucuronosyl, rhamnosyl, and xylosyl residues. Blastocladiomycota present a sim-
ilar complement but also have lost the capacity to synthesise xylosyl, galacturonosyl and
glucuronosyl. Neocallimastigomycota, however, are shown to be able to synthesize only
glucuronosyl, rhamnosyl, galactosyl, fucosyl, and xylosyl residues.

Mucoromycota, Zoopagomycota, and Glomeromycota. Mucoromycota,
Zoopagomycota, and Glomeromycota constitute an unresolved grouping of largely
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saprotrophic or parasitic hyphal fungi once classified as the phylum Zygomycota. The phylum
Zoopagomycota comprises two major subphyla in these data: Kickxellomycotina and
Entomophthoromycotina. Kickxellomycotina are shown to have the ability to synthesize nu-
cleotide-sugars whose monosaccharides are glucosyl, N-acetylglucosaminyl, mannosyl, galac-
tosyl, and glucuronosyl residues. However, UDP-GIcA has also been lost in the Dimargaritales
and Legeriomycetaceae (e.g., the insect symbionts of the genus Smittium) (Fig. S1) following
the emergence of the Kickxellomycotina. The insect-pathogenic Entomophthoromycotina
clade is predicted to synthesize UDP-Glc, UDP-GIcNAc, GDP-Man, UDP-GIcA, UDP-Gal, UDP-
Fuc, and, in Basidiobolus spp., also UDP-Xyl and UDP-Rha. Finally, these data show that some
members of the parasitic and predatory Zoopagales order within Zoopagomycota can bio-
synthesize UDP-GIcNAc, UDP-GIc, UDP-Man, UDP-GIcA, UDP-Xyl, UDP-Rha, and UDP-Gal.
Mucoromycota have the enzyme pathways to synthesize UDP-GIcNAc, UDP-Glc, UDP-Man,
UDP-GIcA, UDP-Xyl, UDP-Rha, GDP-Fuc, and UDP-Gal. The Glomeromycota (arbuscular mycor-
rhizae) are mutualistic symbionts crucial to the ecological viability of plants and are shown to
synthesize UDP-GIcNAc, UDP-GIc, UDP-Man, UDP-GIcA, UDP-Xyl, UDP-Rha, GDP-Fuc, and
UDP-Ara.

Ascomycota and Basidiomycota. The Dikarya are the most speciose of all fungi and
account for the majority of species sampled in this work. The majority of Basidiomycota
species are predicted to synthesize nucleotide-sugars that carry glucosyl, N-acetylgluco-
saminyl, mannosyl, glucuronosyl, xylosyl, galactosyl, and, with the exception of the
plant-parasitic Ustilaginomycotina (true smuts), fucosyl residues. The annotated phyloge-
netic results also show a consistent presence in the enzyme pathways for the synthesis
of UDP-Galf in the Ustilaginomycotina and Pucciniomycotina, with a very sparse distribu-
tion across the Tremellales order (jelly fungi), the genus Dichomitus (Polyporales; poroid
crust fungi), and the polypore genus Trametes, and with one species in the genus
Amanita (mushrooms). UDP-Rha was predicted to be synthesized by Suillus luteus
(Boletales) and Phlebia brevispora (Polyporales; white rot).

These data show that the Ascomycota have the ability to synthesize UDP-Glc,
UDP-GIcNAc, GDP-Man, UDP-Galp, and, with the exception of the Taphrinales and
Saccharomycotina, UDP-Galf. The pathways required for the synthesis of UDP-GIcA
are predicted in most lineages, but not in the Taphrinales, Schizosaccharomyces (e.g.,
fission yeast), Saccharomycetales (except for Tortispora caseinolytica, Lipomyces, and
the oleaginous genus Yarrowia), or Tuberaceae (truffles), and are inconsistently dis-
tributed in the Dothideomycetes and the Leotiomycetes. The Eurotiomycetes (which
include Penicillium) have the ability to synthesize UDP-GIcA, with the exception of the
Onygenales and some losses in single species. UDP-GalA is shown in the data to be
sparsely present in the Ascomycetes, primarily in the entomopathogenic Hypocreales.
Similarly, UDP-Xyl is sparsely distributed in the Saccharomycetales, Aspergillaceae, and
Pezizomycotina. However, all Pezizomycetes in this study are predicted to be able to syn-
thesize UDP-Xyl, with the exception of the Tuberaceae, and this nucleotide-sugar is pres-
ent in one species of the Taphrinomycotina (Neolecta irregularis). These data show no
ascomycete species predicted to biosynthesize UDP-Ara. The ability to synthesize UDP-
Rha is broadly distributed in the Ascomycetes but almost completely lost in the
Herpotrichiellaceae and Penicillium spp. UDP-Rha is also irregularly distributed in the
Aspergillaceae, Dothideomycetes, Saccharomycetales, and early-branching Ascomycota.
The ability to synthesize GDP-Fuc is, with the exception of the Taphrinomycotina and
Saccharomycetales, widely but sparsely distributed across the Ascomycota.

DISCUSSION

Innovations of the fungal cell wall have underpinned the spectacular expansion of
Fungi that began some 2 billion years ago (22). The cell wall provides the necessary
mechanical resistance against environmental pressures and assaults but simultane-
ously has the flexibility to remodel itself during morphogenesis, to interface with hosts,
and to mediate signaling. This structural dynamism is accompanied by significant
inter- and intraspecies compositional variations, the extent of which remains to be

March/April 2021 Volume 12 Issue2 e03540-20

mBio’

mbio.asm.org 8


https://mbio.asm.org

Evolution of Cell Wall Biosynthesis in Fungi

understood. The present work used phylogenomic analyses of biochemical path-
ways responsible for the biosynthesis of nucleotide-sugars to elucidate the varia-
tion of monosaccharides available for incorporation into cell wall polysaccharides.
When considered in an evolutionary context, our results enable inferences of fungal
cell wall evolution since the split from metazoans and can be used pragmatically to
identify species-specific monosaccharide profiles that can be targeted for the devel-
opment of antifungal compounds.

The nucleotide-sugar pyrophosphorylases catalyze the conversion of monosaccharide
1-phosphates from the de novo and salvage pathways to the primary UDP-sugars used
in the biosynthesis of the fungal cell wall polysaccharides: UDP-GIc, UDP-Man, and UDP-
GlcNAc. In Fig. 3, experimentally verified enzyme activities that synthesize these nucleo-
tide-sugars cluster with large, well-resolved clades containing all major fungal lineages.
This is consistent with the fundamental position of UDP-Glc, GDP-Man, and UDP-GIcNAc
in the fungal kihngdom and the basal position of these enzyme families. UDP-GIcNAc
pyrophosphorylase (UAP) and UDP-Glc pyrophosphorylase (UGP) form single monophy-
letic groupings; however, mannose-1-phosphate guanylyltransferase (GMPP) comprises
three clades. GMPP splits C and D have representatives from all major fungal lineages,
implying that an early gene duplication event occurred before any of the early-branch-
ing lineages had diverged from the fungal ancestor (Fig. 3, split F). The third clade
assigned as GMPP (split E) is Dikarya specific and is separated by a very long branch. This
lineage may have been lost in fungal lineages that diversified after the Dikarya diver-
gence, but without data determining branching order, the precise relationship of split E
in the GMPP clade requires further analysis. Additionally, GMPP split E does not contain
an experimentally characterized enzyme and was assigned a function using protein pro-
file and homology data. Thus, it is possible that functional annotations for this clade
require reassessment. Regardless, our evidence that the GMPP gene duplication event
occurred early in fungal evolution is consistent with the putative pleiotropic roles of
mannose in different fungal metabolic processes (23).

The NSI epimerase/dehydrogenase/dehydratase/mutase phylogeny (Fig. 4) shows
an enzyme family that has undergone substantial duplication and neofunctionalization
prior to the ancestral split of fungi from the lineage leading to the Metazoa or nuclear-
iid amoebae. Indeed, considering that biochemically characterized sequences from
plants and bacteria nest within the UXE, GAE, GER, and GMD fungal clades, this func-
tional differentiation probably occurred prior to the emergence of eukaryotes (24) or
through horizontal evolutionary processes. The UGD, UGM, RHM, and UGE-A/B/C
clades all comprise basal fungi; however, the NRS/ER clade is resolved to be Dikarya
specific. This clade is the only NSI enzyme family in this study that is thought to have
evolved following the emergence of the eukaryotes (24). However, the absence of
early-branching fungi suggests either missing data, widespread loss in early-branching
lineages, or a phylogenetic artifact; the branch leading to the NRS/ER and GMD clades
(split H) is poorly supported (34%).

In contrast to the shallow relationships present in other NSI clades, the UGE groups
are weakly structured, with relatively deep phylogenetic relationships. As resolved in
Fig. 4, the groups are not monophyletic: UGE-C makes up a clade with RHM and GER
(split M), whereas UGE-A and -B cluster with UXE (split B). This observation places the
UDP-Glc 4-epimerase at the midpoint of the phylogeny and the basal NSI enzyme func-
tion. This result is inconsistent with the prevailing model of NSI evolution (24) and
inconclusive without further biochemically characterized representatives in UGE-C and
well-resolved, deep phylogenetic nodes (see Data Set S2 in the supplemental material).
However, the abundance of putative UGE sequences is consistent with the ubiquity of
galactose in fungal metabolism (25).

The weak structure of the UGE-A/B and UXE grouping is evident by the short molecu-
lar branch separating them. Similarly, a disassociation between phylogenetic structure
and predicted activity exists with UGE-B. The clade comprises sequences of enzymes
that are predicted to bind UDP-GIcNAc and catalyze the conversion to UDP-GalNAc.

March/April 2021 Volume 12 Issue2 e03540-20

mBio’

mbio.asm.org 9


https://mbio.asm.org

Schwerdt et al.

However, as seen in Fig. 4, the ability to interconvert these acetylated substrates evolved
subsequent to the emergence of the Aspergillaceae. Taken together, these results
resolve UGE as a polyphyletic grouping comprising UGE-A, UGE-B, UGE-C, and UXE.
Further work is required to improve confidence in the functional assignments, determine
precise class boundaries, and perhaps determine whether convergent evolution, horizontal
inheritance, or hitherto undiscovered neofunctionalization has driven the observed phylo-
genetic structure.

The phylogenetic results provided the opportunity to annotate the presence of spe-
cific nucleotide-sugar interconverting and biosynthetic pathways on the fungal species
tree. Using these data, we can illuminate macroscale patterns in cell wall evolution in
fungi and predict cell wall carbohydrate composition profiles for fungal taxa.

The cytoparasitic Microsporidia are, along with their sister taxon Rozellidea, the most
basal lineages in our data. The only nucleotide-sugars predicted in Microsporidia are those
synthesized by the UDP-Glc, GDP-Man, and UDP-GIcNAc pyrophosphorylases. This sugar
distribution appears consistent with the position of Microsporidia at the base of the fungal
tree. However, Rozella spp. synthesize four additional nucleotide-sugars (UDP-GIcA, UDP-
Rha, UDP-Xyl, and GDP-Fuc), and taxa branching after Microsporidia (Blastocladiomycota
and Chytridiomycota) are resolved to synthesize all nucleotide-sugars discussed in this
study, with the exception of UDP-GalNAc (Fig. 5 and 6). A loss of these pathways in
Microsporidia is probable, because, first, there are ~60 nucleotide-sugars known in prokar-
yotes and, second, extreme selection has driven Microsporidia to simplify much of their
biology, including their genomes and metabolic pathways (26).

Fungi almost certainly evolved in an aquatic environment (27). Terrestrial colonization
had a profound impact on morphology (18), particularly with regard to the advancement
of hyphal growth and the loss of flagellated mobility. The Chytridiomycota are primarily
flagellated, require water for dispersal, and are relatively speciose in aquatic habitats (27).
Along with the Blastocladiomycota, they have rudimentary hyphal growth and diverged
from other fungi prior to terrestrial colonization. Subsequent to the emergence of the
Mucoromycota, Zoopagomycota, and Glomeromycota (28), we first observe the loss of the
flagellum, the expansion of hyphal growth, and a fundamental shift in nuclear organiza-
tion (19). These clades predominantly occupy terrestrial habitats and are basal to the fun-
gal lineages that expanded on land. As seen in Fig. 4, their diversification corresponds to a
significant reduction in the diversity of nucleotide-sugar biosynthetic pathways (Fig. 5 and
6). There is evidence that other carbohydrate enzyme pathways have experienced major
gene losses following life strategy transitions. Early fungi are thought to have colonized
land before plants, possibly exploiting streptophyte algae, then diversifying as terrestrial
lineages expanded. It has been shown that pectinase enzyme families were present in
very early fungi, undergoing significant gene loss in lineages that adapted to nonplant eu-
karyotic hosts (such as arthropods) but duplicating in those that had followed the
Embryophytes (29).

This predicted monosaccharide distribution pattern extends into the later-diverging
Ascomycetes and Basidiomycetes. In the Dikarya, we observe an irregular distribution
of predicted nucleotide-sugar pathways such that resolving the ancestral losses of
monosaccharides is impossible. For instance, in the Ascomycota, we identify the path-
ways for UDP-Rha synthesis throughout the division, with some notable losses in the
Eurotiomycetes. In contrast, the majority of Basidiomycota lineages have lost the ability
to incorporate rhamnose into their cell walls (Fig. 6). However, we are unable to specify
that rhamnose was lost in the Basidiomycetes following the divergence from the
Ascomycetes, because two species spread across the division (Phlebia brevispora and
Suillus brevipes) and are shown to have RHM and NRS/ER representatives (Fig. S1).
Conversely, we observe a near-universal distribution of GDP-Fuc in the Basidiomycetes,
with the exception of the Ustilagomycotina, but a very sparse and wide distribution in
the Ascomycetes (Fig. 5).

The irreqular presence of some monosaccharides in the fungal species tree con-
trasts with previous observations of a negative association between monosaccharide
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diversity and fungal expansion. We cannot with confidence specify nodes on the fun-
gal tree where specific nucleotide-sugars have been lost. The scattered presence of
some nucleotide-sugars, for example, UDP-Xyl in the Ascomycetes (Fig. 5), suggests
that they were lost in taxa subsequent to the emergence of extant fungal species. The
selection (or lack thereof) that caused this widespread loss in the current epoch is
unknown. Significant gene loss rates have been shown in the Ascomycota, particularly
during independent simplification events in yeast lineages subsequent to the evolu-
tion of complex multicellularity (30, 31). Whether significant life strategy and pheno-
typic transitions explain specific nucleotide-sugar losses remains to be determined.
Alternatively, other evolutionary mechanisms might explain the fragmented distribu-
tion of nucleotide-sugar biosynthesis pathways in the Dikarya. Although still a matter
of active debate, horizontal gene transfer (HGT) across species boundaries is thought
to be significant to prokaryotic and eukaryotic evolution (32, 33) and has been
observed in fungi (34, 35). The trophic strategies of fungi permit the horizontal transfer
of genetic material. A scenario where the incorporation of host cell wall enzymes con-
fers an advantage in, for instance, evading the immune response is highly plausible.
Such explanations for the predicted irregular distribution of nucleotide-sugars (and
therefore monosaccharides) require further investigation.

Variations in genome assembly and annotation completeness may contribute to
the inconsistent phylogenetic distribution of monosaccharides. However, we consider
this to be unlikely, because the three primary nucleotide-sugars thought to be present
in all fungi (UDP-GIcNAc, UDP-GIlc, and GDP-Man) are, with a handful of exceptions,
resolved in all species. If assembly and annotation quality could completely explain the
irregular distribution of monosaccharides, then it is reasonable to expect that we
would observe a fragmented presence in the primary nucleotide-sugars also.

This work has made explicit the range of monosaccharides in specific fungal taxa. In
particular, xylosyl residues have been biochemically shown to be present in Cryptococcus
neoformans, and homology data have suggested a wider distribution (36), but these data
show significant losses in Ascomycota, the most speciose fungal lineage. Fucose has been
chemically shown to occur in the Mucoromycota (6, 37, 38), but although previous phylo-
genetic observations predicted fucose in the Basidiomycetes (39), we reveal here the scat-
tered presence of fucose in Ascomycota. Galactofuranose is predicted both here and by
Tefsen et al. (40) to be widespread across the Ascomycota. Additionally, we resolve a few
Basidiomycetes that are able to synthesize this nucleotide-sugar—the inverse distribution
to that observed for fucose and xylose. Such patterns of predicted monosaccharide distri-
bution inform the development of antifungal compounds and illustrate the dynamic and
varied evolutionary history of the fungal cell wall.

MATERIALS AND METHODS

Initial sequence data acquisition. Representative sequences from the de novo nucleotide-sugar
biosynthetic and interconverting pathways were accessed from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (https://www.genome.jp/kegg-bin/show_pathway?map00520/cpd:C00029/
cpd:C00103) (41) using Enzyme Commission (EC) numbers corresponding to relevant nodes in the net-
work. Selected EC numbers were used to search the DOE Joint Genome Institute (JGI) MycoCosm data-
base (https://genome.jgi.doe.gov/programs/fungi/index.jsf) (42) for additional protein sequence data
from publicly available fully sequenced genomes.

Quality control of the initial sequence data. Sequences for each EC number were aligned using
MUSCLE (43), and phylogenies were built with FastTree (version 2.1.5) (44) using the Jones-Taylor-
Thornton (JTT) substitution model (45) and 20 gamma rate categories. To investigate putative protein
functions and confirm the protein sequences of the initial data, a BLAST (BLASTP) (46) search of each
protein sequence was performed against the NCBI nonredundant (nr) and Swiss-Prot databases.
Additional annotation data were obtained from local InterProScan searches (47) to assign putative func-
tions. Finally, experimentally characterized fungal and bacterial sequences from major identified nucleo-
tide-sugar interconverting enzymes were included as functional references (Table S1, Data Set S1, and
Data Set S2). Based on the multiple sequence alignment, phylogeny, homology, and annotation results,
obvious outliers were discarded from subsequent analyses.

Protein profile searches of available fungal genomes. To characterize de novo nucleotide-sugar
biosynthetic and interconverting pathways in available fungal genomes, hmmbuild (48) was used to
construct hidden Markov models (HMM) (48) for each NSI EC category using the curated alignments.
Since no candidate sequences existed in either the KEGG or the JGI database for EC 5.1.3.-, representing
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the UDP-Rha synthase 3,5-epimerase/4-reductase (NRS/ER) enzyme family, the HMM was constructed
using data from Martinez et al. (17). Hmmsearch (48) was used to search the JGI MycoCosm database for
matches to the constructed NSI profiles, and specific NSI class E value thresholds were determined
through inspection of InterProScan, BLAST, and i-TASSER (49) results.
Phylogenetic analysis and identification of sequence motifs specific to each enzyme. The AlignSeqs
function from DECIPHER (50) was used to align the final curated protein sequences for each NSI EC class.
The NSI enzymes included in this study encompass two major classes, the pyrophosphorylases and epi-
merases/dehydrogenases/isomerases. Multiple sequence alignments of these superfamilies were also
constructed using AlignSeqs with the default parameters.
IQ-TREE was used to infer phylogenetic trees for both the pyrophosphorylase and epimerase/dehy-
drogenase/isomerase superfamilies. Model selection was performed using the integrated ModelFinder
(51) with WAG+R10 as the best-fit model for both data sets. IQ-TREE was run with a maximum of 1,000
ultrafast bootstrap replicates and nearest-neighbor interchange optimization (-bnni). For each data set,
15 independent tree inferences were performed, and the highest-likelihood iteration was selected as
final.
Prediction of the presence or absence of each nucleotide-sugar on the fungal species tree. A
fungal species tree was constructed using iTOL (https://itol.embl.de/) (52) with data from the NCBI tax-
onomy database (53). The tree was modified to correspond to recent literature (18, 54-73).

Data availability. The HMM files used in this work have been deposited at FigShare (https://doi.org/
10.25909/14091062).
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